Q1.

The table below shows information about the fractions obtained when crude oil is distilled.

Fraction	n	Supply from distillation as percentage (%) of crude oil input	Demand by consumers as percentage (%) of crude oil input	Number of carbon atoms in hydrocarbon chain
LPG 2 6 C ₁ – C				
Petrol		14	27	$C_5 - C_{10}$
Kerosen	е	13	8	$C_{11} - C_{15}$
Diesel		21	21	C ₁₆ – C ₁₉
(a) Som (i)	e pe Wh	etrol is produced by cracking y is it necessary to produce	g. e some petrol by cracking	2
(ii)	 (ii) Which fraction is the most suitable to be cracked to produce petrol? Draw a ring around the correct answer. diesel kerosene LPG 			
(iii)	Giv pet	e two reasons why the fractor	tion you chose in part (ii)	is cracked to produce
(b) Desc	ribe	the process used to crack	hydrocarbons.	

(3)

Q2.

Many fuels are produced from crude oil.

(a) Crude oil is separated into fractions by distillation in a fractionating column.

A fractionating column is shown below.

(i) Describe how crude oil is separated into fractions by fractional distillation.

(ii) Some properties of hydrocarbons change as the size of the molecules increases.

Describe the trends in boiling point and viscosity as the number of carbon atoms in the molecule increases.

	Boiling point
	Viscosity
LPG	(liquefied petroleum gas) is a fuel. LPG contains propane (C_3H_8).
(i)	Complete the displayed (structural) formula for propane.
	н
	H C-C-C
	н
(ii)	Burning fuels releases energy. Name two products formed when LPG is burnt.
(iii)	Some cars are now designed to use LPG as a fuel. LPG is about 50p per litre cheaper than petrol.
	Suggest one reason why most car owners use cars designed to use petrol and not LPG as a fuel.

Q3.

This question is about hydrocarbons.

The diagram below shows a hydrocarbon.

(a) Complete the formula for the hydrocarbon shown in the figuer above.

C_____ H_____

(1)

(b) What is the name of the hydrocarbon in the figure above?

- (c) Which homologous series does the hydrocarbon in the figure above belong to?
- (1)

(1)

(1)

(d) 30 g of another hydrocarbon contains 24 g of carbon.

Which calculation gives the percentage of carbon in the hydrocarbon? Tick (\checkmark) **one** box.

(e) **Table 1** shows boiling points of some hydrocarbons.

Table	1

Formula of hydrocarbon	Boiling point in °C
C ₂ H ₆	-89
C ₄ H ₁₀	0
C ₆ H ₁₄	69
C ₈ H ₁₈	125
C ₁₀ H ₂₂	174

Describe how the boiling points change as the number of carbon atoms in the hydrocarbon increases.

Hydrocarbons can be cracked.

(f) Give **one** condition used to crack hydrocarbons.

(1)

		(1)
(g)	Balance the equation for the cracking of C_6H_{14}	
	$C_6H_{14} \longrightarrow C_2H_6 + \underline{\qquad} C_2H_4$	(4)
(h)	Give one reason why hydrocarbons are cracked.	(1)
		(1)

(Total 8 marks)

Q4.

Crude oil is separated into fractions by distillation.

Each fraction contains hydrocarbon molecules of a similar size.

The table shows information about two fractions obtained when crude oil is distilled.

Fraction	Supply from distillation as percentage (%) of crude oil input	Demand by consumers as percentage (%) of crude oil input	Number of carbon atoms in hydrocarbon chain
Petrol	14	27	$C_{5} - C_{10}$
Kerosene	13	8	C ₁₁ – C ₁₅

(a) Some of the kerosene fraction is made into petrol.

Use the table to suggest two reasons why kerosene is used to make petrol.

(2)

(b) Use the correct word from the box to complete each sentence.

boiling	catalyst	cracking	filtration	polymer
,				

Kerosene is made into petrol by a process called ______.

Kerosene is heated.

The hydrocarbons vaporise.

The gases are passed over a hot ______.

(2) (Total 4 marks)

Q5.

This question is about the Earth's resources.

When most fuels burn carbon dioxide is produced.

Propane (C_3H_8) is a fuel.

(a) Balance the equation for the combustion of propane.

 C_3H_8 + ____ $O_2 \rightarrow 3 CO_2 + 4 H_2O$ (1) (b) Describe the test for carbon dioxide. Give the result of the test. Test Result _____ (2) (c) Propane can be cracked to produce propene and hydrogen. Complete the symbol equation for the reaction. $C_3H_8 \rightarrow$ ______ + H_2 propane propene hydr hydrogen propane (1) Describe the test for hydrogen. (d) Give the result of the test. Test Result _____ (2) Propene is an alkene. (e) Describe the test for alkenes. Give the colour change in the test.

Test _____

The table below shows the boiling points of three alkanes.

Alkanes	Boiling point in °C	
C_5H_{12}	36	
C ₁₀ H ₂₂	174	
C ₁₅ H ₃₂	271	

(c) What is the general formula for alkanes?

(d)	Explain the trend in	the boiling	points	of the alkanes.
(4)		i ule boiling	pointo	

A st	udent investigated one property of the alkanes C_5H_{12} , $C_{10}H_{22}$ and $C_{15}H_{32}$
This	is the method used
1.	Pour 20 cm ³ of C_5H_{12} into a separating funnel.
2.	Open the tap of the separating funnel and start a timer.
3.	Stop the timer when the level of C_5H_{12} reaches line X.
4.	Repeat steps 1 to 3 with C ₁₀ H ₂₂ and C ₁₅ H ₃₂
The	diagram below shows the apparatus used.
	Separating funnel 20 cm ³ C ₅ H ₁₂ Line X Tap
The	level of C_5H_{12} takes 6.4 seconds to reach line X .

Reason ____

(2)

Q7.

Crude oil is a mixture of hydrocarbons.

(a) Complete the sentences.

Choose answers from the box.

	air	enzymes	mud	plankton	trees
Cruc	le oil is t	he remains of			
Millic	ons of ye	ars ago biomass was	s buried unde	r	
b) Ther	e are th	ree stages, A , B and	C , in separat	ing hydrocarbons	from crude oil.
Stag	e A	Hydrocarbons evapo	rate		
Stag	e B	Crude oil is heated			
Stag	e C	Vapours condense			
Give	the cori	ect order for stages A	A, B and C.		
First	stage				
Seco	ond stag	e			
Third	d stage	- :O			
c) Wha	t is the r	name of the process u	ised in separ	ating hydrocarbor	ns from crude oil?
Tick	(√) one	box.			
Chr	omatogr	aphy]	
Filtr	ation]	
Fra	ctional d	istillation]	
d) Alka	nes are	hydrocarbons.			

The image below represents an alkane.

What is the formula of the alkane in the above image?

C____H____

(e) What does **X** represent in the above image?

Tick (\checkmark) one box.

Covalent bond

Ionic bond

Metallic bond

(f) What is the general formula for alkanes?

Tick (√) **one** box.

CnH_{2n-2}

 C_nH_{2n}

 $C_n H_{2n+2} \\$

(1)

(1)

(1)

(g) Hydrocarbons are used to make polymers. Polymers are used to make plastic bags.

In one year 8.0 billion plastic bags were used.

The next year there was a charge for plastic bags and only 1.3 billion plastic bags were used.

Calculate the decrease in the number of plastic bags used.

Decrease = _____ billion

(1) (Total 8 marks)

Q8.

(b)

Natural gas is mainly a hydrocarbon called methane.

(a) Use **one** word from the box to complete the sentence.

	compounds	elements	molecules	
Hydro	carbons contain hydro	ogen and carbon or	ıly.	
Hydro	gen and carbon are _		<u> </u>	. (1)
The d	iagrams represent ato	oms of hydrogen an	d carbon.	(')
(
Hy	drogen	Carbon		
Draw a	a ring around the corr	ect answer to comp	lete the sentences.	

- (i) The centre of each atom is called the nucleu
- bond. nucleus. symbol.

(1)

- (ii) The hydrogen atom has one electron and the carbon atom has
 four six
 four lectrons.
- (c) A molecule of methane can be represented as

Draw a ring around the correct answer to complete the sentences.

(1) (Total 7 marks)

Q9.

Fire dancers use firesticks to make flame patterns.

One end of the firestick is soaked in kerosene. The kerosene is lit and burns with a yellow flame.

(a) Kerosene is a mixture of hydrocarbons.

Which elements are present in a hydrocarbon?

(b) A student investigated the products formed when kerosene burned.

The diagram shows the apparatus the student used.

Describe and explain the observations you would expect the student to make.

(1)

Q10.

(a) Some hydrocarbons are used as fuels in power stations.

The table gives the boiling points of four hydrocarbons.

Hydrocarbon	Boiling point in °C
W	165
X	-160
Y	-40
Z	180

(i) Which of these hydrocarbons are gases at room temperature (20 °C)?

- (ii) Which of these hydrocarbons has the largest molecules?
- (iii) Which of these hydrocarbons ignites most easily?
- (b) Some hydrocarbons are used to produce polymers.

Which type of hydrocarbons can be converted into polymers?

(1) (Total 4 marks)

(1)

(1)

(1)

(1)

Q11.

Crude oil contains many different hydrocarbons.

(i) Which formula in the list represents a hydrocarbon? Draw a **ring** around the correct formula.

 CO_2 $C_6H_{12}O_6$ C_8H_{18} H_2O

 Which word from the list below best describes crude oil? Draw a ring around the correct word.

alloy	compound	element	mixture
-	-		

(iii) Choose, from the list below, words to complete the passage about the separation of the hydrocarbons in crude oil by fractional distillation.

atoms ed	burned	condensed	evaporated	filter
fraction	s ions	molecules	neutrali	sed
During fractio	nal distillation the m	any hydrocarbons i	in crude oil are se	eparated
into	each of	which contains		with a
similar numbe	er of carbon			
To do this the	oil is first	and t	hen	
at a number o	of different temperat	ures.		(5)
				(Total 7 marks)

Q12.

To make crude oil more useful it is separated into different fractions.

(a) Complete the gaps in the following sentences.

Crude oil is separated into different fractions by a process called _

- (b) Each fraction is a mixture of compounds. Most of these compounds are hydrocarbons, made up of the elements hydrogen and carbon.
 - (i) Explain the difference between a mixture and a compound.

(2)

(2)

(ii) Explain the difference between a compound and an element.

Q13.

The table shows some information about alkanes.

Name	Formula	Relative formula mass	Boiling point in °C
methane	CH₄	16	-160
ethane	C ₂ H ₆	30	-90
propane		44	-40
butane	C ₄ H ₁₀	58	
pentane	C ₅ H ₁₂	72	36
hexane	C ₆ H ₁₄	86	68

(a) Give the formula of propane.

(1)

(1)

- (b) (i) What happens to the boiling points of the alkanes as the relative formula mass increases?
 - (ii) Draw a graph. Plot the points and draw a best fit line.

Q14.

(a) Alkanes are important hydrocarbon fuels. They have the general formula C_nH_{2n+2}

The points on the graph show the amount of energy released when 1 mole of methane (CH₄), ethane (C₂H₆), propane (C₃H₈) and butane (C₄H₁₀) are burned separately.

(ii) Use the graph to estimate the amount of energy released when 1 mole of octane (C₈H₁₈) is burned.

Energy released = _____ kJ

(1)

(1)

- (iii) Suggest why we can make a good estimate for the energy released by 1 mole of pentane (C_5H_{12}).
- (iv) A student noticed that octane (C_8H_{18}) has twice as many carbon atoms as butane (C_4H_{10}) , and made the following prediction:

"When burned, 1 mole of octane releases twice as much energy as 1 mole of butane."

Use the graph to decide if the student's prediction is correct. You **must** show your working to gain credit.

(b) Some information about four fuels is given in the table.

			Combu	stion pr	oducts	
Fuel	Туре	Heat released in kJ per g	CO ₂	SO2	H₂O	Type of flame
Bio-ethanol	Renewable	29	\checkmark		\checkmark	Not smoky
Coal	Non-renewable	31	\checkmark	\checkmark		Smoky
Hydrogen	Renewable	142		Ò	\checkmark	Not smoky
Natural gas	Non-renewable	56	\checkmark		\checkmark	Not smoky

From this information a student made two conclusions.

For each conclusion, state if it is correct and explain your answer.

(i) "Renewable fuels release more heat per gram than non-renewable fuels."

(ii) "Non-renewable fuels are better for the environment than renewable fuels."

(2)

(2)

(a) Complete this sentence about crude oil.

Crude oil is mainly a mixture of compounds called ______ which contain carbon and hydrogen only.

(1)

(b) The diagram shows a laboratory experiment used to separate crude oil.

Complete each sentence by choosing the correct words from the box.

Q16.

This question is about hydrocarbons.

- (a) Most of the hydrocarbons in crude oil are alkanes.
 - (i) Large alkane molecules can be cracked to produce more useful molecules.

The equation shows the cracking of dodecane.

(1)

(b) A group of students investigated the energy released by the combustion of four hydrocarbon fuels.

The diagram below shows the apparatus used.

Each hydrocarbon fuel was burned for two minutes.

 Table 1 shows the students' results.

	After two minutes				
Name and formula of hydrocarbon fuel	Mass of fuel used in g	Temperature increase of water in °C	Energy released by fuel in kJ	Energy released by 1.0 g of fuel in kJ	Relative amount of smoke in the flame
Hexane, C ₆ H ₁₄	0.81	40	16.80	20.74	very little smoke
Octane, C ₈ H ₁₈	1.10	54	22.68	20.62	some smoke
Decane, C ₁₀ H ₂₂	1.20	58	24.36		smoky
Dodecane, C ₁₂ H ₂₆	1.41	67	28.14	19.96	very smoky

Table	1
-------	---

(i) Calculate the energy released by 1.0 g of decane in kJ.

Energy released = _____ kJ

(ii) Suggest **one** improvement to the apparatus, or the use of the apparatus, that would make the temperature increase of the water for each fuel more accurate.

Give a reason why this is an improvement.

(iii) The students noticed that the bottom of the beaker became covered in a black substance when burning these fuels.

Name this black substance.

Suggest why it is produced.

(2)

(2)

(2)

(iv) A student concluded that hexane is the best of the four fuels.

1.

2. _____

Give two reasons why the results in $\ensuremath{\text{Table 2}}$ support this conclusion.

(c)	In this question you will be assessed on using good English, organising	

Most car engines use petrol as a fuel.

- Petrol is produced from the fractional distillation of crude oil.
- Crude oil is a mixture of hydrocarbons.
- Sulfur is an impurity in crude oil.

Car engines could be developed to burn hydrogen as a fuel.

- Hydrogen is produced from natural gas.
- Natural gas is mainly methane.

Table 2 shows information about petrol and hydrogen.

	Petrol	Hydrogen
State of fuel at room temperature	Liquid	Gas
Word equation for combustion of the fuel	petrol + oxygen \longrightarrow carbon dioxide + water	hydrogen + oxygen → water
Energy released from combustion of 1 g of the fuel	47 kJ	142 kJ

Table 2

Describe the **advantages** and **disadvantages** of using hydrogen instead of petrol in car engines.

Use the information given and your knowledge and understanding to answer this question.

Q17.

Crude oil is a resource found in rocks.

Most of the compounds in crude oil are hydrocarbons.

(a) Complete the sentence.

Crude oil is formed by the decomposition of ______.

(b) Alkanes are hydrocarbons.

Give the name of the alkane molecule that has three carbon atoms.

(c) The figure below shows two alkane molecules.

The table below shows the melting points and boiling points of methane and hexane.

	Melting point in °C	Boiling point in °C	
Methane	-183	-162	
Hexane	-95	69	

Compare the structure and properties of methane and hexane.

(1)

Hydrocarbons are cracked to produce more useful alkanes and alkenes.

(6)

(d) Decane (C₁₀H₂₂) is cracked to produce **two** products. Complete the equation for the reaction. $C_{10}H_{22} \rightarrow _$ + C_2H_4 (1) C₂H₄ is an alkene. (e) What is the test for alkenes? Give the result of the test if an alkene is present. Test Result (2) (Total 11 marks) Q18. (a) The hydrocarbon $C_{16}H_{34}$ can be cracked. Balance the equation for cracking C₁₆H₃₄ \rightarrow C₂H₄ + C₈H₁₈ $C_{16}H_{34}$ (1) Describe the differences between cracking and distillation. (b) (2) What type of reaction is cracking? (c) Tick one box.

(1)

(d) Ethene is used to make poly(ethene).

Poly(ethene) is used to make plastic bags.

the table below shows data from a Life Cycle Assessment (LCA) for a plastic bag and a paper bag.

	Plastic bag	Paper bag
Raw materials	Crude oil or natural gas	Wood
Energy used in MJ	1.5	1.7
Mass of solid waste in g	14	50
Mass of CO ₂ produced in kg	0.23	0.53
Volume of fresh water used in dm ³	255	4 520

A company stated: 'A Life Cycle Assessment shows that using plastic bags has less environmental impact than using paper bags'.

Evaluate this statement. Use your knowledge and the information from above the table above.

Q19.

Crude oil and natural gas are natural resources in many countries.

The table shows percentages of hydrocarbons in natural gas from three different countries.

Hydrocarbon	Percentage (%) of hydrocarbon in natural gas			
	Country X	Country Y	Country Z	
Methane	78.03	88.10	94.36	
Ethane	9.70	5.30	2.37	
Propane	4.82	2.16	0.15	
Butane	1.33	0.72	0.02	
Pentane	0.30	0.18	0.00	

(a) Calculate the mean percentage of propane from countries X, Y and Z.

Give your answer to 2 decimal places.

Mean percentage of propane =	

(2)

(1)

(1)

_%

- (b) Suggest why natural gas from different countries has different percentages of hydrocarbons.
- (c) Complete the sentence.

Choose the answer from the box.

an atom an electron an ion a molecule

The formula CH₄ represents ______ of methane.

(d) Complete the sentence.

The hydrocarbons in the table belong to the homologous series of

Figure 1 shows how properties vary with the increasing size of molecule in this

(1)

D

homologous series. Figure 1 С A в Property Property Property Property Increasing Increasing Increasing Increasing size of size of size of size of molecule molecule molecule molecule Which graph shows how boiling points vary? (e) Tick one box. В С D Α (f) Which graph shows how viscosity varies? Tick one box. D Α В С

(1)

(2)

(1)

(g) Crude oil is fractionally distilled.

Fractions with larger molecules are cracked.

Describe two differences between fractional distillation and cracking.

1.____

2.

(h) Ethene is a product of crude oil.

Complete the sentence.

Ethene polymerises to produce ______.

(i) The production of plastic bags uses limited resources.

Figure 2 shows two ways (A and B) of saving limited resources.

(Total 12 marks)

(2)

Q20.

Crude oil is a mixture of hydrocarbons.

(a) The hydrocarbons in crude oil are separated into fractions by fractional distillation.

Figure 1 shows a fractional distillation column.

Figure 1

(1)

(1)

Crude oil vapour passes up the column.

Complete the sentence.

Choose the answer from the box.

condenses	dissolves	freezes	melts

Each fraction ______ at a different level.

(b) Why do the fractions separate?

Tick one box.

The fractions have different boiling points.

The fractions have different flammability.

The fractions have different melting points.

The fractions have different viscosity.

Most of the hydrocarbons in crude oil are alkanes.

(c) Figure 2 represents an alkane molecule.

Figure	2
--------	---

Name the alkane.

(d) Methane (CH₄) is an alkane.

What is the general formula for alkanes?

Tick one box.

C_nH_n					
C_nH_{2n}					
C_nH_{2n-2}					
C _n H _{2n+2}					(1)
					(1)
Alkanes burn ir	i oxygen.				
Balance the eq	uation for metha	ane burning.			
	CH4 +	$0_2 \rightarrow$	CO ₂ +	H₂O	(1)

(1)

(f) Ethene is an alkene.

(e)

Which reagent is used to test for alkenes?

Tick **one** box.

(1)

(1)

The table below shows data from a life cycle assessment (LCA) for the disposal of 10 000 biodegradable plastic bags.

	Burning and using the energy to generate electricity	Landfill
Mass of carbon dioxide produced in kg	25	15
Mass of solid residue in kg	0.050	0.070
Mass of sulfur dioxide produced in kg	0.20	0.30

- (g) Why are life cycle assessments (LCA) done?
- (h) Compare the **two** methods for the disposal of biodegradable plastic bags.

Use information from the table above.

(4)

(1)

Q21.

This question is about hydrocarbons and crude oil.

(a) Hydrocarbon fuels are produced from crude oil.

Describe how crude oil is separated into fractions.

Butane is a hydrocarbon.

- (b) Two equations for the combustion of butane are:
 - $2 C_4 H_{10} + 13 O_2 \rightarrow 8 CO_2 + 10 H_2 O_2$
 - $2 C_4 H_{10} + 5 O_2 \rightarrow 8 C + 10 H_2 O_2$

Why are different products formed?

(c) One other product of the combustion of butane is carbon monoxide.Balance the equation.

 $\underline{\qquad} C_4H_{10} + \underline{\qquad} O_2 \rightarrow \underline{\qquad} CO + \underline{\qquad} H_2O$

(d) Carbon dioxide is a greenhouse gas.

Describe the greenhouse effect in terms of the interaction of short and long

wavelength radiation with matter.

	_
	_
	-
	_
	_
	_
	_
	_
	_
	_
	_
	(4
	•
	mark
(Total To	iiiai N

Q22.

Large hydrocarbon molecules can be cracked to produce smaller, more useful molecules.

Alkanes and alkenes are produced when hydrocarbons are cracked.

- (a) Give **two** conditions used for cracking.
 - 1 ______ 2 _____ (2)
- (b) Butane (C_4H_{10}) is an alkane.

The figure below shows part of the displayed structural formula of butane.

Complete the displayed structural formula of butane in the figure.

(1)

(c) Butane burns in oxygen.

Complete the word equation for the complete combustion of butane.

	butane + oxygen \rightarrow		+		
(d)	Ethene is an alkene.			(2)	
	Give a test for alkenes.				
	Give the result of the test if a	an alkene is present.			
	Test			_	
	Result			_	
				_	
				(2)	
(e)	Each year many tonnes of c	rude oil are extracted	from the Earth.		
	It took millions of years for the crude oil to be formed.				
	What do we call developmen compromising the resources	nt that meets the nee for future generatior	ds of current generations without s?		
	Tick (√) one box.				
	Finite development				
	Global development				
	Natural development				
	Sustainable development				

(1) (Total 8 marks)

Q23.

This question is about hydrocarbons and the uses of hydrocarbons.

(a) The figure below shows a model of an alkane.

The table below shows data from a life cycle assessment (LCA) for a wooden window frame and a plastic window frame.

Both window frames are the same size.

	Wood	Plastic
Sources of hydrocarbons used for production in kg	5.37	18.23
Greenhouse gases released during production, use and disposal in kg equivalent of CO ₂	457	487
Oxides of nitrogen and sulfur dioxide produced in arbitrary units	29.6	37.7
Waste materials in kg	16.5	28.8
Total energy consumption in production, use and disposal in MJ	9150	9713
Lifetime cost to customer to buy and maintain in \pounds	147	102

Evaluate the sustainability of wooden and plastic window frames.

You should include environmental and economic factors.

(6) (Total 12 marks)

Q1. (a)	(i)	demand (for petrol) is greater than supply		
		ignore reference to figures unless qualified	1	
	(ii)	kerosene	1	
	(iii)	supply (of kerosene) is greater than demand	1	
		contains larger molecules (which can be split into smaller molecules)	1	
(b)	hea	t to vaporise (hydrocarbons)	1	
	(the	n pass the vapours over a) hot catalyst allow zeolites / aluminium oxide for catalyst accept as an alternative approach: mix (the vapours) with steam (1 mark) (then) heat to a (very) high temperature. (1 mark)	1	[6]
01				[0]
(a)	(i)	 any three from: (crude) oil is heated (crude) oil evaporates vapour condenses allow fractions condense at different temperatures. allow the fractions have different boiling points 	3	
	(ii)	(as number of carbon atoms increases) (Boiling point) increases		
		(Viscosity) increases	1	
(b)	(i)	Н Н Н H-C-C-C-H H Н Н	1	
	(ii)	any two from: • carbon dioxide		

	 allow CO₂ water allow H₂O allow water vapour carbon monoxide allow CO carbon. 	
	allow soot	2
	(iii) any one from:	2
	 lack of availability of LPG cars need to be modified 	
	allow LPG cars are more expensive	
		1
		[9]
Q3.		
(a)	C ₃ H ₈	_
		1
(b)	propane	1
(c)	alkane(s)	
(0)		1
	24 × 100	
(d)	30	1
(0)	(as the number of early an eterms increases the) beiling point increases	
(e)	(as the number of carbon atoms increases the) boiling point increases	1
(f)	any one from:	
()	high temperature	
	allow a temperature between 400 °C and 900 °C	
	Ignore neat / not	
	• steam	
	low / no oxygen (atmosphere)	
	• catalyst	
	allow aluminium oxide	
	allow zeolites	
	allow porous pot	
		1
(g)	$C_6H_{14} \rightarrow C_2H_6 + 2 C_2H_4$	
	allow multiples or halves	1
(h)	any one from:	
(1)		

• to make smaller molecules

- to make more useful molecules
- to produce fuels
- more demand for smaller molecules
- to make (starting materials for) polymers
 - allow to make (starting materials for) other chemicals allow to make alkenes

Q4.

- (a) any **two** from:
 - high demand for petrol (compared to petrol supply)
 - insufficient supply of petrol
 - surplus kerosene
 - allow less demand for kerosene (compared to supply)
 - greater demand for petrol than kerosene
 - allow petrol is used more (than kerosene)
 - (hydrocarbon) molecules in kerosene are bigger (so can be cracked / made smaller).

allow for **2** marks: more demand for petrol than supply **or**

kerosene more supply than demand

(b) cracking

answers must	be in	this	order
	× • • • •		0,00,

catalyst

Q5.

- (a) $C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$ allow multiples
- (b)

MP2 is dependent upon correct response in MP1

(bubble gas through) lime water allow (bubble gas through) calcium hydroxide (solution)

turns milky / cloudy / white or white precipitate forms

(c) C₃H₆

(d)

MP2 is dependent upon correct response in MP1

[8]

1

2

1

1

1

1

1

1

[4]

	burning / lit splint allow flame do not account allowing aplint		
	do not accept glowing spirit	1	
	burns with a (squeaky) pop sound <i>allow pops</i>	1	
(e)	bromine (water)		
	do not accept bromide	1	
	(aclour change) aronget	1	
	(colour change) orange"	1	
	(to) colourless*		
	*allow 1 mark for colourless (to) orange		
		1	
			[9]
Q6.			
(a)	plankton		
	allow biomass allow (marine) animals / organisms		
	ignore plants		
		1	
	buried in mud allow compressed under mud		
	allow compressed in sedimentary rock		
	ignore fossilised	1	
	over a long period of time		
	or over millions of years		
		1	
(b)	crude oil heated	1	
		1	
	(nydrocarbons / liquids) evaporate allow (hydrocarbons / liquids) vaporise / boil		
		1	
	vapours / gases condense	1	
	fractions have different boiling points	•	
	Or		
	tractions collect at different levels depending upon boiling point	1	

(c) $C_n H_{2n+2}$

			1	
(d)	bonds	max 2 marks for incorrect reference to particles /		
		allow converse		
	the boiling	point increases as the number of (carbon) atoms increases	1	
	(because t or	the weak) intermolecular forces increase		
	(because t	the weak) forces between the molecules increase	1	
	(and these	e intermolecular forces increase) as the size of the molecules increases	1	
(e)		MP2 dependent on correct response in MP1		
	(as numbe	er of carbon atoms increase) the time increases	1	
	(because)	the viscosity increases	1	
			-	[13]
Q7				
(a)	plankton	must be in this order		
			1	
	mud		1	
(b)	B or crude	e oil is heated		
	A or hydro	ocarbons evaporate		
	C or vapo	urs condense must be in this order		
		all correct for 1 mark	1	
(c)	fractional c	listillation		
(N	.		1	
(d)	C ₃ H ₈		1	
(e)	covalent b	ond	1	
(f)	C_nH_{2n+2}		1	
(a)	6.7 (billion)		•	
(9)		, allow 6 700 000 000	1	

Q8.

- (a) elements
- (b) (i) nucleus
 - (ii) six
- (c) (i) CH₄
 - (ii) bond
- (d) (i) oxygen
 - (ii) any **one** from:
 - (water) does not pollute accept no harmful gas(es) allow less pollution
 - (only) water is produced
 - <u>no</u> carbon dioxide / monoxide (is produced) accept <u>no</u> greenhouse gas(es) / effect or <u>no</u> global warming

Q9.

(a)	hydrogen and carbon		
	both elements in either order needed for mark		
	any additional elements negates the mark	1	
(b)	colourless liquid / condensation in U tube		
	ignore ice melts	1	
	(because) water produced	1	
	lime water goes cloudy	1	
	(because) carbon dioxide produced	1	
			[5]

1

1

1

1

1

1

1

[7]

[8]

(8	a)	(i)	X and Y		
			both needed	1	
		(ii)	Z	1	
		(iii)	x	-	
		()		1	
(t)	unsa	aturated / alkenes / those with double $(C = C)$ bonds	1	
					[4]
Q11.	-				
(i)	CଃH∕	for one mark		
				1	
(i	i)	mix	for one mark		
				1	
(i	ii)	frac atom	tions molecules		
		evap	in this order for 1 mark each		
				5	[7]
					[,]
Q12.	•	(
(8	a)	fract	tional distillation	1	
		boilir	ng point or use	1	
(ł	n)	(i)	mixture: compounds or elements or substances together but not che	emically	
(*	.,	(1)	combined	Simouny	
			ignore references to separation	1	
			compound: (different) elements or different atoms together and chen combined	nically	
			ignore references to separation	1	
		(ii)	element: contains only one type of atom		
			accept made of atoms which contain the same number of		
				1	
			compound: contains different types of atom chemically combined 'chemically combined' not needed here if already stated in (b)(i)		

Q13.

(a) C₃H₈

- (b) (i) increases / gets larger
 - (ii) all 5 points plotted correctly

deduct 1 mark for each incorrectly plotted point but **ignore** –90, 30 allow error of one square in any direction

- (iii) boiling point estimate from their graph allow $\pm 2 \ ^{\circ}C$
- (iv) shown clearly on graph

1

1

1

2

1

1

1

1

1

1

1

1

1

[8]

(c) C₉H₁₈

Q14.

(a) (i) straight line through the 'points' and extended to C₈H₁₈ do **not** accept multiple lines

- (ii) 5500 range 5400 to 5600 accept ecf from their graph
- (iii) it is a straight line graph allow directly proportional accept constant difference between (energy) values accept C_5H_{12} close to values on the graph or C_5H_{12} comes in middle of the graph ignore 'fits the pattern' unqualified ignore 'line of best fit' ignore 'positive correlation'
- (iv) expected ranges for working are: accept correct numerical answer as evidence of working

(5400 to 5600) – (2800 to 2900) = (2500 to 2800)

or

their value from (a)(ii) - a value from 2800 to 2900

or

(5400 to 5600) / their (a)(ii) divided by 2

or

a value from 2800 to 2900 - 2

- no / not quite / almost / yes this mark is only awarded on evidence from their correct working
- (b) (i) incorrect / no **or** partially correct ignore references to hydrogen

bio-ethanol produces least energy

or

bio-ethanol produces 29 kJ

(ii) *ignore incorrect / correct*

any two from:

- hydrogen produces <u>only</u> H₂O accept hydrogen does not produce harmful gases / CO₂ / SO₂
- coal produces SO₂
 allow coal causes acid rain / respiratory problems
- coal produces smoke allow coal causes global dimming
- both renewable <u>and</u> non-renewable fuels produce CO₂ accept bio-ethanol <u>and</u> natural gas / coal produce CO₂ / global warming
- (both) the non-renewable fuels produce CO₂
 accept coal <u>and</u> natural gas produce CO₂ / global warming
- (both) renewable fuel<u>s</u> produce no smoke accept hydrogen <u>and</u> bio-ethanol do not produce smoke / global dimming
- (both) renewable fuels produce no SO₂ accept hydrogen and bio-ethanol do not produce SO₂ / acid rain

[9]

[5]

2

1

1

Q15.

(a)	hydrocarbons	1
(b)	evaporation	1
	condensation	1
	distillation allow fractional distillation	1
(c)	lower and more	

Q16.

(a) (i) high temperature allow heating / hot / 250-900 °C

catalyst or steam

allow named catalyst eg zeolite, Al_2O_3 , silica, ceramic allow in the absence of air / oxygen

1

1

1

1

2

1

ignore any references to pressure

(ii) colourless

allow decolourised ignore clear / discoloured

(b) (i) 20.3(0) (kJ)

if answer incorrect allow **1** mark for 24.36/1.2

(ii) use a lid allow insulate beaker or use draught shield 1 reduce energy / heat loss ignore references to thermometer or repeats or distance of flame or loss of water vapour allow stir (1) to distribute energy / heat (1) allow use a metal can (1) as it's a better conductor (1) 1 (iii) carbon/soot ignore tar, smoke 1 (produced by) incomplete combustion allow from a limited supply of oxygen/air 1 (iv) hexane gives out the greatest energy (per 1.0 g) ignore more energy 1 hexane produces the least smoke / carbon / soot

 Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also apply a 'best-fit' approach to the marking.

allow has the cleanest flame

ignore less smoke / carbon / soot

Level 3 (5 – 6 marks):

Descriptions of advantages **and** disadvantages that are linked to their own knowledge.

Level 2 (3 – 4 marks):

Descriptions of an advantage **and** a disadvantage with some use of their knowledge to add value.

Level 1 (1 – 2 marks):

Statements made from the information that indicate whether at least one statement is an advantage **or** a disadvantage **or** a linked advantage or disadvantage

or a linked advantage or disadvantage

0 marks:

No relevant content

Examples of the added value statements and links made in the response could include:

Note that link words are in bold; links can be either way round. Accept reverse arguments and ignore cost throughout.

Advantages of using hydrogen:

- Combustion only produces water so causes no pollution
- Combustion does not produce carbon dioxide so this does not contribute to global warming or climate change
- Combustion does not produce sulfur dioxide so this does not contribute to acid rain
- Incomplete combustion of petrol produces carbon monoxide that is toxic
- Incomplete combustion of petrol produces particulates that contribute to global dimming
- Petrol comes from a non-renewable resource but there are renewable/other methods of producing hydrogen
- Hydrogen releases more energy **so** less fuel needed or more efficient

Disadvantages of using hydrogen:

- Hydrogen is a gas **so** is difficult to store or transfer to vehicles
- Hydrogen gas is very flammable **so** leaks cause a greater risk of explosion

6

1

1

[18]

- Most hydrogen is produced from fossil fuels which are running out
- Cannot be used in existing car engines so modification / development or replacement is needed
- Lack of filling stations so difficult to refuel your vehicle

Q17.

(a) plankton

or

(ancient) biomass

allow microscopic plants / animals

(b) propane

allow C₃H₈

(c) Level 2: Scientifically relevant features are identified; the way(s) in which they are similar / different is made clear and (where appropriate) the magnitude of the similarity / difference is noted.
4–6

Level 1: Relevant features are identified and differences noted. 1–3 AO1 AO2

1-3

No relevant content

0

Indicative content

- methane has 1 carbon atom, hexane has 6
- methane has 4 hydrogen atoms, hexane has 14
- both contain C H bonds
- only hexane contains C C bonds
- both are hydrocarbons
- hexane has a higher melting point than methane (or converse)
- hexane has a higher boiling point than methane (or converse)
- methane is a gas at room temperature
- hexane is a liquid at room temperature
- both are small molecules
- hexane has larger molecules than methane
- weak forces between molecules
- forces between hexane molecules stronger than between methane molecules
- hexane is more viscous than methane
- both are flammable
- methane is more flammable than hexane (or converse)
- possible products of combustion from both are: carbon, carbon monoxide, carbon dioxide, water
- neither conduct electricity
- (d) C₈H₁₈
- (e) bromine (water)

turns (from orange / brown) to colourless

MP2 is dependent on MP1 allow decolourises ignore clear

1

1

1

[11]

Q18.

(a)	4 (C ₂ H ₄)	1
(b)	cracking involves a catalyst	1

distillation does not

but cracking does

(c) Decomposition

(d) Level 3 (5–6 marks):

A logically structured evaluation with links involving several comparisons. Nearly all points made are relevant and correct.

Level 2 (3–4 marks):

Some valid comparisons made between the two types of bag. There may be some incorrect or irrelevant points.

Level 1 (1–2 marks):

A vague response with few correct and relevant points and with no direct comparisons.

0 marks:

No relevant content

Indicative content

Accept converse in terms of plastic bags for all statements

- Paper bags are made from a renewable resource
- Plastic bags are made from a finite resource
- Paper bags require more energy to manufacture
- Paper bags produce more waste
- Paper bags are biodegradable
- Paper bags create more CO₂
- CO₂ created by paper bags offset by photosynthesis in growing wood
- Paper bag requires much more fresh water
- Paper bags cannot be recycled
- Agree because non-renewability less important than other factors or disagree because of converse or can't say because data inconclusive / incomplete

[10]

6

2

1

1

1

1

Q19.

(a) 2.38

if answer incorrect, allow **1** mark for 2.37 to full calculator display

or

for (4.82 + 2.16 + 0.15) / 3

- (b) different types of biomass / plankton allow they are mixtures
- (c) a molecule

(d)	alkanes	1
(e)	В	
(5)	P	1
(1)	В	1
(g)	 any two from: cracking uses a catalyst, fractional distillation doesn't cracking breaks up molecules, fractional distillation separates them cracking is a chemical process, fractional distillation is a physical process 	2
(h)	poly(ethene)	1
(i)	(A=) reuse	1
	(B=) recycle	1 [12]
Q20.		
(a)	condenses	1
(b)	the fractions have different boiling points	1
(c)	propane do not accept propene	
(d)	C _n H _{2n+2}	1
(e)	$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$	
	allow multiples	1
(f)	bromine water	1
(g)	to assess the environmental impact (of the stages in the life of a product) allow to see the effect / harm / damage on the Earth / environment / planet ignore references to energy, pollution, carbon footprint, carbon dioxide, sustainability	1
(h)	Level 2: Scientifically relevant features are identified; the ways in which they are similar / different is made clear and the magnitude of the similarity / difference noted.	

No relevant content

Indicative content

- burning 10 000 bags produces 10 kg more of carbon dioxide than landfill
- putting 10 000 bags in landfill produces 0.02 kg more of solid residue than burning
- putting 10 000 bags in landfill produces 50% more sulfur dioxide than burning
- burning 10 000 bags produces 25 kg of carbon dioxide, but landfill only produces 15 kg
- putting 10 000 bags in landfill produces 0.07 kg of solid residue but burning only produces 0.05 kg
- Iandfill produces less carbon dioxide than burning
- landfill produces more solid residue than burning
- burning produces less sulfur dioxide than landfill

Q21.

(a)

maximum of **3** marks if incorrect reference made to cracking ignore fractional distillation ignore fracking

heat or vaporise (oil)

	temperature gradient in column	
	allow column is cooler at the top	
	or	
	allow column is hotter at the bottom	
		1
	(vapour) condenses (into fractions)	
		1
	depending on bailing point of fraction	
	depending on boiling point of fraction	
	allow at different levels	1
		1
(b)	different amounts of oxygen available	
	allow complete combustion and incomplete / partial	
	combustion	
		1
(c)	$2 C_4 H_{10} + 9 O_2 \rightarrow 8 CO + 10 H_2O$	
(-)	allow correct multiples / halves	
		1
<i>(</i>)		
(d)	short wavelength radiation which enters the atmosphere	
	because uv / ultra violet radiation which enters the	
	atmosphere	1
		1

1

[11]

0

	is absorbed by materials and re-emitted	1	
	as a longer wavelength radiation as ir / infrared radiation	1	
	(the longer wavelength radiation is trapped by) a greenhouse gas / carbon dioxide / methane which stops radiation escaping (from the atmosphere) <i>allow so temperature increases</i>	1	[10]
Q22.	any two from:		
(u)	 high temperature ignore heat / hot allow a temperature between 400 °C and 900 °C 		
	catalyst allow aluminium oxide, alumina, porous pot, zeolites		
	• steam		
	high pressure		
	low oxygen atmosphere	2	
(b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	all bonds and atoms must be present	1	
(c)	carbon dioxide allow CO ₂	1	
	water allow H ₂ O	1	
(d)	bromine (water)		
	do not accept bromide	1	
	turns (from orange / brown / yellow to) colourless MP2 is dependent on MP1 allow decolourises		

	(e)	sustainable development	1
Q2:	3. (a)	butane	1
	(b)	(molecule) made up of carbon and hydrogen (atoms) only	1
	(c)	$C_{11}H_{24} \rightarrow C_5H_{10} + 2 C_2H_4 + C_2H_6$ allow 1 mark for 2 C ₂ H ₄ allow 1 mark for C ₂ H ₆	
		OR $C_{11}H_{24} \rightarrow C_5H_{10} + 2 C_3H_6 + H_2 (2)$ allow 1 mark for 2 C_3H_6 allow 1 mark for H_2	
		OR $C_{11}H_{24} \rightarrow C_5H_{10} + 2 C_2H_6 + C_2H_2$ (2) allow 1 mark for 2 C_2H_6 allow 1 mark for C_2H_2	2
	(d)	C ₂ H ₆ is useful as a fuel allow smaller molecule so useful as a fuel	1
		(because more) flammable (than larger molecules)	1
		OR	
		C ₂ H ₄ / C ₃ H ₆ / C ₅ H ₁₀ is used to make polymers (1) allow C ₂ H ₄ / C ₃ H ₆ / C ₅ H ₁₀ is used to make plastics allow C ₂ H ₄ / C ₃ H ₆ / C ₅ H ₁₀ is used to make other chemicals	
		(because more) reactive (than alkanes) (1) if a named product is given, allow 1 mark for a correct use and 1 mark for a correct linked reason	
	(e)	Level 3: A judgement, strongly linked and logically supported by a sufficient range of correct reasons is given.	5-6
		Level 2: Some logically linked reasons are given. There may also be a simple judgement.	3_4
		Level 1: Relevant points are made. They are not logically linked.	5 –4

1

1-2

[8]

Indicative content

- production of plastic uses more hydrocarbons which are from nonrenewable crude oil
- production of plastic produces more greenhouse gases in the atmosphere which contributes to global warming
- production of plastic produces more sulfur dioxide which causes acid rain
- production of plastic produces more oxides of nitrogen which cause acid rain and respiratory problems
- disposal of plastic produces more waste which increases landfill
- burning plastic produces fumes which are toxic so cause respiratory problems
- lifetime cost of plastic frames is less
- plastic frames have lower costs for maintaining
- the total energy consumption for plastic frames is greater than for wooden frames
- judgement

[12]