Q1.

Which pair of reagents reacts to form a tetrahedral complex?

- **A** CoCl₂(aq) and concentrated $NH_3(aq)$
- **B** CuSO₄(aq) and concentrated NH₃(aq)
- **C** CuSO₄(aq) and sodium ethanedioate(aq)
- D FeCl₃(aq) and concentrated HCl(aq)

Q2.

Which has a bond angle of 109.5°?

Α	C (diamond)	$^{\circ}$
В	C (graphite)	$^{\circ}$
С	NH₂ [−]	$^{\circ}$
D	NH ₃	0

(Total 1 mark)

(Total 1 mark)

Q3.


Which species is not pyramidal in shape?

- **A** PF₃
- **B** H₃O⁺
- C CH₃-
- D BF₃

(Total 1 mark)

Q4.

Which species has a square planar shape?

(Total 1 mark)

0

 \circ

 $^{\circ}$

Q5.

Sodium thiosulfate reacts with dilute hydrochloric acid as shown.

$$Na_2S_2O_3(aq) + 2 HCI(aq) \rightarrow 2 NaCI(aq) + SO_2 (g) + S(s) + H_2O(l)$$

(c) Draw a diagram to show the shape of a molecule of H_2O Include any lone pairs of electrons.

State the H-O-H bond angle.

Explain this shape and bond angle.

Diagram

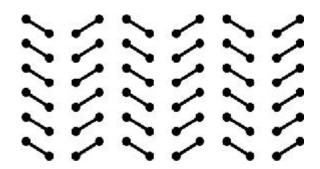
Bond angle		
Explanation	<u> </u>	
	$\cdot O$	
	5	
. 4.		
2		

Q6.

Ammonia reacts with aluminium chloride as shown by the equation:

$$NH_3 + AICI_3 \longrightarrow H_3NAICI_3$$

(4)


(a) Draw diagrams to illustrate the shapes of NH₃ molecules and of AlCl₃ molecules.
 Include in your diagrams any lone pairs of electrons that influence the shape.
 Indicate the values of the bond angles.

Name the type of bond formed between N and AI in H₃NAICI₃ and explain how this (b) bond is formed. Type of bond _____ Explanation _____ (2) Explain how the value of the CI-AI-CI bond angle in AICI₃ changes, if at all, on (c) formation of the compound H₃NAICl₃ (2) (Total 7 marks) Q7. This question is about the element iodine and its compounds. (a) Iodine is in Group 7 of the Periodic Table. Complete the electron configuration of an iodine atom. [Kr]

(3)

(1)

(b) Part of the structure of an iodine crystal is shown in the diagram.

Use your knowledge of structure and bonding to explain why the melting point of iodine is low (113.5 $^{\circ}$ C) and why that of hydrogen iodide is very low (–50.8 $^{\circ}$ C).

(c) State why iodine does **not** conduct electricity.

(1) Draw the shape of the IF₃ molecule and the shape of the IF₄⁻ ion.

Include any lone pairs of electrons that influence each shape.

(f)

(2)

(6)

Q8.

This question is about shapes of molecules and ions.

Draw the shape of NCl3 and of NCl4+

Include any lone pairs of electrons that influence the shape.

Name the shape of NCl₃

State and explain the bond angle in NCl4+

Shape of NCl₃ Shape of NCl₄⁺

Name of shape of NCl ₃		
Bond angle in NCl4 ⁺		
Explanation of bond angle in NCl4 ⁺		
	(Total 5	5 marks)

Q9.

The melting point of XeF_4 is higher than the melting point of PF_3

Explain why the melting points of these two compounds are different.

In your answer you should give the shape of each molecule, explain why each molecule has that shape and how the shape influences the forces that affect the melting point.

(Total 6 marks)

Q10.

This question is about compounds containing fluorine.

(a) Draw the shape of a molecule of krypton difluoride (KrF₂).
 Include in your answer any lone pairs of electrons that influence the shape.
 Name the shape produced by the atoms in a KrF₂ molecule and suggest a bond angle.

Name of shape		
Bond angle	·	
		(3)

(b) There are two lone pairs of electrons on the oxygen atom in a molecule of oxygen difluoride (OF₂).

Explain how the lone pairs of electrons on the oxygen atom influence the bond angle in oxygen difluoride.

(2)

(c) Silicon tetrafluoride (SiF₄) is a tetrahedral molecule.

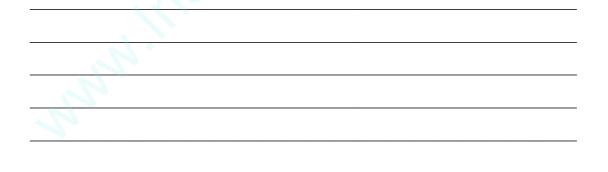
Deduce the type of intermolecular forces in SiF₄ Explain how this type of intermolecular force arises and why no other type of intermolecular force exists in a sample of SiF₄

Intermolecular forces in SiF4	
Explanation	

	(3)
	()

(3)

Q11.


This question is about structure and bonding.

(c) Methoxymethane (CH₃OCH₃) is an isomer of ethanol.

The table shows the boiling points of ethanol and methoxymethane.

Compound	Boiling point / °C
ethanol	78
methoxymethane	-24

In terms of the intermolecular forces involved, explain the difference in boiling points.

(c) Draw the shape of the POCl₃ molecule and the shape of the CIF₄⁻ ion. Include any lone pairs of electrons that influence the shapes.

In a $POCI_3$ molecule the oxygen atom is attached to the phosphorus atom by a double bond that uses two electrons from phosphorus.

Name each shape.

Suggest a value for the bond angle in CIF4-

Name of shape of POCI ₃	
Name of shape of CIF4 ⁻	
Bond angle in CIF4	
	(5)
	(Total 11 marks)

Q12.

This question is about shapes of molecules.

Complete the table below by drawing the shapes of both the AsF₅ and KrF₂ molecules, showing all lone pairs of electrons that influence the shape.

Deduce the bond angle(s) in AsF5

	AsF₅	KrF ₂
Diagram of shape		
Bond angle(s)		

(Total 3 marks)

Q13.

This question is about sodium and some of its compounds.

(a) Use your knowledge of structure and bonding to explain why sodium bromide has a melting point that is higher than that of sodium, and higher than that of sodium iodide.

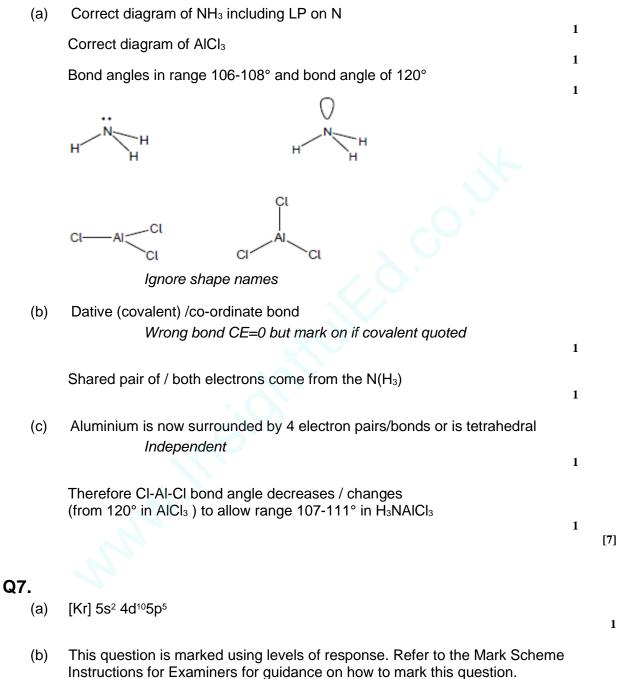
(d) Sodium reacts with ammonia to form the compound NaNH $_2$ that contains the NH_{2^-} ion.

Draw the shape of the $NH_{2^{-}}$ ion. Include any lone pairs of electrons that influence the shape.

Predict the bond angle. Justify your prediction. shape

Bond angle _____Justification

www.insightsuffer.


- (4)

Q1. D		
U	FeCl₃(aq) and concentrated HCl(aq)	[1]
Q2.		
Α		[1]
Q3. D		[1]
Q4. c		
Ū	XeF ₄	[1]
Q5.		
(c)	M1	
	н,н	
	M1 bent shape and 2 lone pairs on O	
	Allow any suitable representation of lone pairs (e.g. dots, crosses, lobes with/without dots/crosses)	
		1
	M2 104½°	
	M2 Allow 104-105°	1
	M3 lone pairs repel more (strongly) than bond(ing) pairs	
	M3 Allow non-bonding pair for lone pair Allow covalent bond for bond(ing) pair	
	Allow shared pair for bond(ing) pair	
	Allow OH bond for bond(ing) pair	
	Allow bond for bond(ing) pair	
	NOT OH or O-H without the word bond for bond(ing) pair	1

M4 so bond angle reduced from/less than $109 \ensuremath{^{10}2^\circ}\xspace$ / tetrahedral

M4 Allow bond angle reduced from 120° if bent with one lone pair in **M1** Allow reduced from 109° Allow reduced by 2.5° per lone pair or 5° if **M2** correct

Q6.

Level 3

All stages are covered and the explanation of each stage is correct and complete.

Answer communicates the whole explanation coherently and shows a logical progression from stage 1 to stage 2 and then stage 3.

5-6 marks

1

Level 2

All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies **OR** two stages are covered and the explanations are generally correct and virtually complete.

Answer is mainly coherent and shows a progression through the stages. Some steps in each stage may be out of order and incomplete.

3-4 marks

Level 1

Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, **OR** only one stage is covered but the explanation is generally correct and virtually complete.

Answer includes some isolated statements, but these are not presented in a logical order or show confused reasoning.

1-2 marks

Level 0

Insufficient correct chemistry to warrant a mark.

0 marks

Indicative Chemistry content

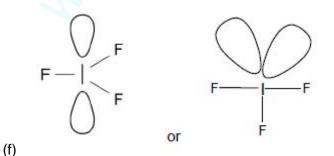
Stage 1

l₂ is molecular. HI is molecular.

Stage 2

IMF hold the molecules together.

There are weak IMF forces hence the melting point is low in both substances.

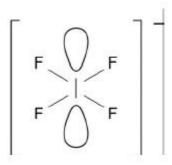

 I_2 bigger molecule than HI so I_2 has more electrons.

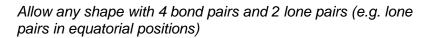
Stage 3

Therefore stronger van der Waals between molecules in I_2 that need more energy to break causing the melting point to be higher.

HI also shows permanent dipole-dipole attraction between molecules but these forces are less than the vdW forces in iodine.

(c) No delocalised electrons or ions




Allow any shape with 3 bond pairs and 2 lone pairs

1

6

1

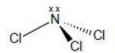
1

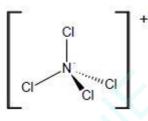
1

1

1

1


1


[5]

Q8.

Shapes:

Must show Ip on NCI3

Must have some indication that shape is 3D

Name of shape of NCl₃ = Pyramidal Allow tetrahedral

Bond Angle = 109.5° Allow 109 – 109.5°

(4 bp and 0 lp) electron pairs repel equally / electron pairs repel to be as far apart as possible

Do not allow atoms repel equally Allow bonds repel equally

Q9.

This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.

All stages are covered and the description of each stage is generally correct and virtually complete. Answer is
communicated coherently and shows a logical progression from stage 1 to stage 2 and stage 3.

Level 2 3-4 marks	All stages are covered but the description of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression from stage 1 to stage 2 and/or stage 3.
Level 1 1-2 marks	Two stages are covered but the description of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements and these are presented in a logical order.
Level 0 0 marks	0 marks Insufficient correct chemistry to gain a mark.

Indicative chemistry content

Stage 1 electron pairs

1a XeF₄ 4BP and 2LP around Xe 1b PF₃ 3BP and 1LP around P

Stage 2 explanation of shapes

2a XeF₄ is square planar Or

______F

2b PF₃ is pyramidal (allow tetrahedral) Or

2c Electron pairs repel as far as possible or Lone pair repels more than bonding pairs

Stage 3 IMF

The relative strength of the intermolecular forces in the molecules must be explained to gain maximum marks.

3a XeF₄ has vdw forces and PF₃ has dipole-dipole forces (and vdw)

3b Stronger/more intermolecular forces in XeF₄

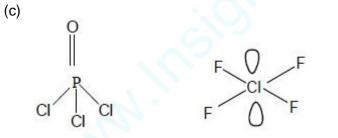
3c Due to larger Mr or more electrons or larger molecules or packs more closely together

Q10.

(a)

Allow diagram with 2 bonds and 3 lone pairs

<u>Linear</u>


1

1

<u>180°</u>

		1	
(b)	Lone pairs repel more than bond pairs	1	
	Allow idea of reducing bond angle		
	bond angle will be lower (than regular tetrahedral angle) / bond angle of 103-106° $$	1	
(c)	Van der Waals forces		
	Allow London forces, dispersion forces, induced dipole-dipole		
	Apply List for M1.		
	Allow M2 if vdW mentioned in M1, otherwise CE=0	1	
	(Uneven distribution of electrons in) one molecule induces dipole in		
	neighbouring/another/nearby molecule	1	
	symmetrical molecule / dipoles cancel		
	OR		
	no hydrogens bonded to F (N or O), therefore no hydrogen bonding	1	
			[8]
1.			

Q11.

POCl₃: allow any shape showing 1 double bond between P and O and 3 P-Cl bonds

1

1

 CIF_{4} : allow any shape showing 4 CI-F bonds and 2 lone pairs

(distorted) Tetrahedral Square planar	1
	1
90°	1 [11]

	AsF₅	KrF ₂
Diagram of shape	$F \xrightarrow{F} F$	$\mathbf{F} - \mathbf{Kr} - \mathbf{F}$
Bond angle(s)	M3: 90 <u>and</u> 120	NL

*KrF*² must show lone pairs (either as lobes or crosses/dots) and must be linear. Ignore any lone pairs on fluorine.

Q13.

This question is marked using Levels of Response.			
Examine	Examiners should apply a 'best-fit' approach to the marking.		
Level 3 5-6 marks	All stages are covered and the explanation of each stage is generally correct and virtually complete.		
	Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 and then stage 3.		
	Coherent communication requires that there is a comparison between the types of bonding and that the bonding is correct for each substance.		
Level 2 3-4 marks	All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies		
	OR two stages are covered and the explanations are generally correct and virtually complete.		
	Answer is mainly coherent and shows some progression from stage 1 to stage 2 and then stage 3.		
Level 1 1-2 marks	Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies		
	OR only one stage is covered but the explanation is generally correct and virtually complete.		
	Answer shows some progression between two stages		
Level 0	Insufficient correct chemistry to gain a mark.		

[3]

0	marks
0	11101110

Indicative chemistry content. Contradictions (eg molecules, IMFs, covalent bonding,) negate statements.

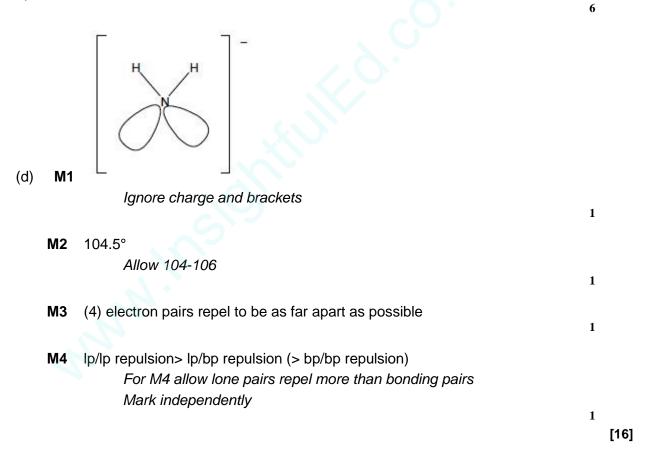
<u> Stage 1 - Na</u>

1a) Na has metallic bonding
1b) there is attraction/ bonding between the positive nucleus/ ion and the <u>delocalised</u> electrons in Na
1c) Na has a giant/lattice structure

Stage 2 - NaBr or Nal

2a) Ionic bonding in NaBr and/or Nal

2b) There is attraction/ bonding between the + and - ions in NaBr and/or NaI


2c) NaBr and/or Nal have a giant/lattice structure

Stage 2 – comparison of bonding

3a) The ionic bonds are stronger (or wtte) than the metallic bonds

3b) there is stronger attraction (or wtte) between the + and – ions in NaBr than in Nal

3c) since the Br- ion is smaller than the I- ion

